3D Biosilica Scaffolds from Melophlus sarasinorum and Xestospongia testudinaria Indonesian Sponges are Biocompatible for Cell Growth and Differentiation of Human Wharton’s Jelly Mesenchymal Stem Cell in Bone Tissue Engineering

نویسندگان

چکیده

BACKGROUND: Biosilica derived from Indonesian marine sponge Melophlus sarasinorum and Xestospongia testudinaria is one of the biomaterials that can be developed together with synthetic polymer as a composite. Poly E-caprolactone (PCL) used composite role an osteoconductive material biosilica also tailored slow rate degradation in body. This study aimed to create biocompatible biosilica-based scaffold supports osteogenic differentiation human Wharton's Jelly mesenchymal stem cell (hWJ-MSCs).METHODS: was extracted M. X. acid digestion method. Scaffold prepared using salt leaching The scaffolds were made seven different extract PCL. All tested for morphology, Fourier-transform infrared spectroscopy (FTIR), immunocytochemistry, cytotoxicity.RESULTS: Composite 50% increased viability supported growth within 14 days, whereas seen by presence collagen type 1 day 12 based on immunocytochemistry result.CONCLUSION: PCL+50% promising 3D potential application bone tissue engineering. In conclusion, this shows evidence hWJ-MSC, which might engineering.KEYWORDS: sponge, biosilica, scaffold, osteogenesis,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

plla/ha nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

abstract due to their mulitpotency, mesenchymal stem cells (mscs), have the ability to proliferate and differentiate into multiple mesodermal tissues. the aim of this study was to isolate mscs from human umbilical cord (hucmscs) to determine their osteogenic potential on nanofibrous scaffolds. to this end, poly (l-lactic acid) (plla)/nano hydroxyapatite (ha) composite nanofibrous scaffolds were...

متن کامل

Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...

متن کامل

Comparative Analysis of Mesenchymal Stem Cells Isolated from Human Bone Marrow and Wharton’s Jelly

Introduction: Bone marrow (BM) is a known source of mesenchymal stem cells (MSCs) that are used for cell therapy. This study attempts to identify if the Wharton’s Jelly (WJ) is a suitable substitute for BM as a source for MSCs. Materials and Methods: A population of human WJ and BM stem cells were isolated and incubated with fluorescein conjugated antibodies for five specific MSC markers....

متن کامل

3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes.

UNLABELLED Liver tissue engineering with hepatic stem cells provides a promising alternative to liver transplantation in patients with acute and chronic hepatic failure. In this study, a three-dimensional (3D) bioscaffold was introduced for differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into hepatocytes. For hepatocyte differentiation, third passage BMSCs isolated from normal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Indonesian Biomedical Journal

سال: 2022

ISSN: ['2355-9179', '2085-3297']

DOI: https://doi.org/10.18585/inabj.v14i4.1895